United Kingdom Mathematics Trust

Senior Mathematical Challenge Thursday 7 November 2019

Organised by the United Kingdom Mathematics Trust

Candidates must be full-time students at secondary school or FE college. England \& Wales: Year 13 or below

Scotland: S6 or below
Northern Ireland: Year 14 or below

Instructions

1. Do not open the paper until the invigilator tells you to do so.
2. Time allowed: $\mathbf{9 0}$ minutes.

No answers, or personal details, may be entered after the allowed time is over.
3. The use of blank or lined paper for rough working is allowed; squared paper, calculators and measuring instruments are forbidden.
4. Use a B or an HB non-propelling pencil. Mark at most one of the options A, B, C, D, E on the Answer Sheet for each question. Do not mark more than one option.
5. Do not expect to finish the whole paper in the time allowed. The questions in this paper have been arranged in approximate order of difficulty with the harder questions towards the end. You are not expected to complete all the questions during the time. You should bear this in mind when deciding which questions to tackle.
6. Scoring rules:

All candidates start with 25 marks;
0 marks are awarded for each question left unanswered;
4 marks are awarded for each correct answer;
1 mark is deducted for each incorrect answer (to discourage guessing).
7. Your Answer Sheet will be read by a machine. Do not write or doodle on the sheet except to mark your chosen options. The machine will read all black pencil markings even if they are in the wrong places. If you mark the sheet in the wrong place, or leave bits of eraser stuck to the page, the machine will interpret the mark in its own way.
8. The questions on this paper are designed to challenge you to think, not to guess. You will gain more marks, and more satisfaction, by doing one question carefully than by guessing lots of answers. This paper is about solving interesting problems, not about lucky guessing.

Enquiries about the Senior Mathematical Challenge should be sent to:
UK Mathematics Trust, School of Mathematics, University of Leeds, Leeds LS2 9JT
玉 01133432339 enquiry@ukmt.org.uk www.ukmt.org.uk

1. What is the value of $123^{2}-23^{2}$?
A 10000
B 10409
C 12323
D 14600
E 15658
2. What is the value of $(2019-(2000-(10-9)))-(2000-(10-(9-2019)))$?
A 4040
B 40
C -400
D -4002
E -4020
3. Used in measuring the width of a wire, one mil is equal to one thousandth of an inch. An inch is about 2.5 cm .

Which of these is approximately equal to one mil?
A $\frac{1}{40} \mathrm{~mm}$
B $\frac{1}{25} \mathrm{~mm}$
C $\frac{1}{4} \mathrm{~mm}$
D 25 mm
E 40 mm
4. For how many positive integer values of n is $n^{2}+2 n$ prime?
A 0
B 1
C 2
D 3
E more than 3
5. Olive Green wishes to colour all the circles in the diagram so that, for each circle, there is exactly one circle of the same colour joined to it.

What is the smallest number of colours that Olive needs to complete this task?
A 1
B 2
C 3
D 4
E 5

6. Each of the factors of 100 is to be placed in a 3 by 3 grid, one per cell, in such a way that the products of the three numbers in each row, column and diagonal are all equal. The positions of the numbers $1,2,50$ and x are shown in the diagram.
What is the value of x ?

x	1	50
2		

A 4
B 5
C 10
D 20
E 25
7. Lucy is asked to choose p, q, r and s to be the numbers $1,2,3$ and 4 , in some order, so as to make the value of $\frac{p}{q}+\frac{r}{s}$ as small as possible.
What is the smallest value Lucy can achieve in this way?
A $\frac{7}{12}$
B $\frac{2}{3}$
C $\frac{3}{4}$
D $\frac{5}{6}$
E $\frac{11}{12}$
8. The number x is the solution to the equation $3^{\left(3^{x}\right)}=333$. Which of the following is true?
A $0<x<1$
B $1<x<2$
C $2<x<3$
D $3<x<4$
E $4<x<5$
9. A square of paper is folded in half four times to obtain a smaller square. Then a corner is removed as shown.

Which of the following could be the paper after it is unfolded?

A

B

C

D

E

10. Which of the following five values of n is a counterexample to the statement in the box below?

For a positive integer n, at least one of $6 n-1$ and $6 n+1$ is prime.
A 10
B 19
C 20
D 21
E 30
11. For how many integer values of k is $\sqrt{200-\sqrt{k}}$ also an integer?
A 11
B 13
C 15
D 17
E 20
12. A circle with radius 1 touches the sides of a rhombus, as shown. Each of the smaller angles between the sides of the rhombus is 60°.

What is the area of the rhombus?
A 6
B 4
C $2 \sqrt{3}$
D $3 \sqrt{3}$
E $\frac{8 \sqrt{3}}{3}$

13. Anish has a number of small congruent square tiles to use in a mosaic. When he forms the tiles into a square of side n, he has 64 tiles left over. When he tries to form the tiles into a square of side $n+1$, he has 25 too few.

How many tiles does Anish have?
A 89
B 1935
C 1980
D 2000
E 2019
14. One of the following is the largest square that is a factor of $10!$. Which one?

Note that, $n!=1 \times 2 \times 3 \times \cdots \times(n-1) \times n$.
A (4!) ${ }^{2}$
B $(5!)^{2}$
C $(6!)^{2}$
D $(7!)^{2}$
$\mathrm{E}(8!)^{2}$
15. The highest common factors of all the pairs chosen from the positive integers Q, R and S are three different primes.
What is the smallest possible value of $Q+R+S$?
A 41
B 31
C 30
D 21
E 10
16. The numbers x, y and z satisfy the equations $9 x+3 y-5 z=-4$ and $5 x+2 y-2 z=13$.

What is the mean of x, y and z ?
A 10
B 11
C 12
D 13
E 14
17. Jeroen writes a list of 2019 consecutive integers. The sum of his integers is 2019. What is the product of all the integers in Jeroen's list?
A 2019^{2}
B $\frac{2019 \times 2020}{2}$
C 2^{2019}
D 2019
E 0
18. Alison folds a square piece of paper in half along the dashed line shown in the diagram. After opening the paper out again, she then folds one of the corners onto the dashed line.

What is the value of α ?
A 45
B 60
C 65
D 70
E 75

19. Which of the following could be the graph of $y^{2}=\sin \left(x^{2}\right)$?
A

B

C

D

E

20. The "heart" shown in the diagram is formed from an equilateral triangle $A B C$ and two congruent semicircles on $A B$. The two semicircles meet at the point P. The point O is the centre of one of the semicircles. On the semicircle with centre O, lies a point X. The lines $X O$ and $X P$ are extended to meet $A C$ at Y and Z respectively. The lines $X Y$ and $X Z$ are of equal length.

What is $\angle Z X Y$?

A 20°
B 25°
C 30°
D 40°
E 45°
21. In a square garden $P Q R T$ of side 10 m , a ladybird sets off from Q and moves along edge $Q R$ at 30 cm per minute. At the same time, a spider sets off from R and moves along edge $R T$ at 40 cm per minute. What will be the shortest distance between them, in metres?
A 5
B 6
C $5 \sqrt{2}$
D 8
E 10
22. A function f satisfies the equation $(n-2019) f(n)-f(2019-n)=2019$ for every integer n. What is the value of $f(2019)$?
A 0
B 1
C 2018×2019
D 2019^{2}
E 2019×2020
23. The edge-length of the solid cube shown is 2 . A single plane cut goes through the points Y, T, V and W which are midpoints of the edges of the cube, as shown. What is the area of the cross-section?
A $\sqrt{3}$
B $3 \sqrt{3}$
C 6
D $6 \sqrt{2}$
E 8

24. The numbers x, y and z are given by $x=\sqrt{12-3 \sqrt{7}}-\sqrt{12+3 \sqrt{7}}, y=\sqrt{7-4 \sqrt{3}}-\sqrt{7+4 \sqrt{3}}$ and $z=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}$.
What is the value of $x y z$?
A 1
B -6
C -8
D 18
E 12
25. Two circles of radius 1 are such that the centre of each circle lies on the other circle. A square is inscribed in the space between the circles. What is the area of the square?
A $2-\frac{\sqrt{7}}{2}$
B $2+\frac{\sqrt{7}}{2}$
C $4-\sqrt{5}$
D 1
E $\frac{\sqrt{5}}{5}$

