

United Kingdom Mathematics Trust

SENIOR MATHEMATICAL CHALLENGE Thursday 7 November 2019

Organised by the United Kingdom Mathematics Trust

supported by

Candidates must be full-time students at secondary school or FE college. England & Wales: Year 13 or below Scotland: S6 or below Northern Ireland: Year 14 or below

INSTRUCTIONS

- 1. Do not open the paper until the invigilator tells you to do so.
- 2. Time allowed: **90 minutes**.

No answers, or personal details, may be entered after the allowed time is over.

- 3. The use of blank or lined paper for rough working is allowed; squared paper, calculators and measuring instruments are forbidden.
- 4. Use a B or an HB non-propelling pencil. Mark at most one of the options A, B, C, D, E on the Answer Sheet for each question. Do not mark more than one option.
- 5. **Do not expect to finish the whole paper in the time allowed.** The questions in this paper have been arranged in approximate order of difficulty with the harder questions towards the end. You are not expected to complete all the questions during the time. You should bear this in mind when deciding which questions to tackle.
- 6. Scoring rules:

All candidates start with 25 marks;

0 marks are awarded for each question left unanswered;

4 marks are awarded for each correct answer;

1 mark is deducted for each incorrect answer (to discourage guessing).

- 7. Your Answer Sheet will be read by a machine. **Do not write or doodle on the sheet except to mark your chosen options.** The machine will read all black pencil markings even if they are in the wrong places. If you mark the sheet in the wrong place, or leave bits of eraser stuck to the page, the machine will interpret the mark in its own way.
- 8. The questions on this paper are designed to challenge you to think, not to guess. You will gain more marks, and more satisfaction, by doing one question carefully than by guessing lots of answers. This paper is about solving interesting problems, not about lucky guessing.

Enquiries about the Senior Mathematical Challenge should be sent to:

UK Mathematics Trust, School of Mathematics, University of Leeds, Leeds LS2 9JT**a** 0113 343 2339enquiry@ukmt.org.ukwww.ukmt.org.uk

Senio	Senior Mathematical Challenge Thursday							
1. W	1. What is the value of $123^2 - 23^2$?							
	A 10000	B 10409	C 123	23	D 14600	E 15658		
2. W	What is the value of $(2019 - (2000 - (10 - 9))) - (2000 - (10 - (9 - 2019)))?$							
	A 4040	B 40	C -40	0	D -4002	E -4020		
3. U at	Used in measuring the width of a wire, one mil is equal to one thousandth of an inch. An inch is about 2.5 cm.							
W	Which of these is approximately equal to one mil?							
	A $\frac{1}{40}$ mm	B $\frac{1}{25}$ mm	$C \frac{1}{4}m$	m	D 25 mm	E 40 mm		
4. Fe	4. For how many positive integer values of <i>n</i> is $n^2 + 2n$ prime?							
	A 0	B 1	C 2		D 3	E more than 3		
5. O th	5. Olive Green wishes to colour all the circles in the diagram so that, for each circle, there is exactly one circle of the same colour joined to it.							
W	What is the smallest number of colours that Olive needs to complete this task?							
	A 1	B 2	C 3	D 4	E 5			
6. E w ea	6. Each of the factors of 100 is to be placed in a 3 by 3 grid, one per cell, in such a way that the products of the three numbers in each row, column and diagonal are all equal. The positions of the numbers 1, 2, 50 and x are shown in the diagram. $\begin{array}{c c} x & 1 & 5 \\ \hline x & 1 & 1 $							
W	What is the value of	of x ?				2		
	A 4	B 5	C 10	D 20	E 25			
7. L'	sucy is asked to chalue of $\frac{p}{q} + \frac{r}{s}$ as s	hoose p, q, r and small as possible	s to be the nun	nbers 1, 2, 3	and 4, in some orde	er, so as to make the		
W	What is the smallest value Lucy can achieve in this way?							
	A $\frac{7}{12}$	$B \frac{2}{3}$	C $\frac{3}{4}$		D $\frac{5}{6}$	$E \frac{11}{12}$		
8. T	he number <i>x</i> is th	ne solution to the	e equation $3^{(3^x)}$	= 333.				

Which of the following is true?

A 0 < x < 1 B 1 < x < 2 C 2 < x < 3 D 3 < x < 4 E 4 < x < 5

9. A square of paper is folded in half four times to obtain a smaller square. Then a corner is removed as shown.

Which of the following could be the paper after it is unfolded?

10. Which of the following five values of *n* is a counterexample to the statement in the box below?

		0			I · · · · · · · · · · · · · · ·			
		For a positi	ve integer <i>n</i> , a	at least one of	6n - 1 and $6n + 1$ is	prime.		
	A 10	B 19		C 20	D 21	E 30		
11.	For how many	integer value	s of k is $\sqrt{200}$	$0 - \sqrt{k}$ also an	integer?			
	A 11	B 13		C 15	D 17	E 20		
12.	A circle with radius 1 touches the sides of a rhombus, as shown. Each of the smaller angles between the sides of the rhombus is 60° .							
	What is the area of the rhombus?							
	A 6	B 4	C $2\sqrt{3}$	D $3\sqrt{3}$	$E \frac{8\sqrt{3}}{3}$	60°		
13.	Anish has a nur square of side <i>n</i> has 25 too few.	nber of small a, he has 64 ti	congruent squeet squeet les left over. V	uare tiles to us Vhen he tries t	e in a mosaic. When o form the tiles into a	the forms the tiles into a square of side $n + 1$, he		
	How many tiles	s does Anish	have?					
	A 89	B 19	35	C 1980	D 2000	E 2019		
14.	One of the follo	owing is the l	argest square	that is a factor	of 10!. Which one?			
	Note that, $n! =$	$1 \times 2 \times 3 \times \cdot$	$\cdots \times (n-1) \times$	< n.				
	A $(4!)^2$	B (5!	$)^{2}$	C $(6!)^2$	D $(7!)^2$	E $(8!)^2$		
15.	The highest condifferent prime	mmon factor s.	s of all the pa	irs chosen fro	m the positive integ	ers Q , R and S are three		
	What is the sma	allest possibl	e value of Q +	-R+S?				
	A 41	B 31		C 30	D 21	E 10		
16.	The numbers x What is the me	, y and z satistical for x , y and z satistical for x , y and y	sfy the equation of <i>z</i> ?	$\cos 9x + 3y -$	5z = -4 and $5x + 2$	y - 2z = 13.		
	A 10	B 11	·	C 12	D 13	E 14		
17.	Jeroen writes a	list of 2019	consecutive in	tegers. The su	Im of his integers is	2019.		
	What is the product of all the integers in Jeroen's list?							
	A 2019 ²	в 20	$\frac{19 \times 2020}{2}$	C 2 ²⁰¹⁹	D 2019	E 0		
18.	Alison folds a s diagram. After onto the dashed	equare piece of opening the difference of the di	of paper in hal paper out aga	lf along the da in, she then fo	shed line shown in t lds one of the corne	he ers α°		
	What is the value	ue of α ?						
	A 45	B 60	C 65	D 70	E 75			

19. Which of the following could be the graph of $y^2 = \sin(x^2)$?

20. The "heart" shown in the diagram is formed from an equilateral triangle ABC and two congruent semicircles on AB. The two semicircles meet at the point P. The point O is the centre of one of the semicircles. On the semicircle with centre O, lies a point X. The lines XO and XP are extended to meet AC at Y and Z respectively. The lines XY and XZ are of equal length.

What is $\angle ZXY$?

A 20° B 25° C 30° D 40° E 45°

 $A \xrightarrow{P O} B$

21. In a square garden *PQRT* of side 10 m, a ladybird sets off from *Q* and moves along edge *QR* at 30 cm per minute. At the same time, a spider sets off from *R* and moves along edge *RT* at 40 cm per minute. What will be the shortest distance between them, in metres?

A 5	B 6	C $5\sqrt{2}$	D 8	E 10

22. A function f satisfies the equation (n - 2019)f(n) - f(2019 - n) = 2019 for every integer n. What is the value of f(2019)?

A 0 B 1 C 2018×2019 D 2019^2 E 2019×2020

23. The edge-length of the solid cube shown is 2. A single plane cut goes through the points *Y*, *T*, *V* and *W* which are midpoints of the edges of the cube, as shown.

What is the area of the cross-section?

A $\sqrt{3}$ B $3\sqrt{3}$ C 6 D $6\sqrt{2}$ E 8

24. The numbers x, y and z are given by $x = \sqrt{12 - 3\sqrt{7}} - \sqrt{12 + 3\sqrt{7}}$, $y = \sqrt{7 - 4\sqrt{3}} - \sqrt{7 + 4\sqrt{3}}$ and $z = \sqrt{2 + \sqrt{3}} - \sqrt{2 - \sqrt{3}}$.

What is the value of xyz ?

A 1 B -6 C -8 D 18

E 12

25. Two circles of radius 1 are such that the centre of each circle lies on the other circle. A square is inscribed in the space between the circles.

What is the area of the square?

A $2 - \frac{\sqrt{7}}{2}$ B $2 + \frac{\sqrt{7}}{2}$ C $4 - \sqrt{5}$ D 1 E $\frac{\sqrt{5}}{5}$

© UK Mathematics Trust 2019

www.ukmt.org.uk