5 Integration

5.1 Integration revisited

If the derivative of the function $F(x)$ is $f(x)$, namely $F^{\prime}(x)=f(x)$, then $F(x)$ is called an antiderivative of $f(x)$.
Any two antiderivatives of $f(x)$ differ only by a constant, thus we introduce the notion of indefinite integral, and the following notation:

$$
\int f(x) \mathrm{d} x=F(x)+C
$$

Each differentiation formula naturally leads to an integration formula:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{n}\right)=n x^{n-1} \\
& \int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C \text {, for } n \neq-1 \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x} \\
& \int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+C \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(a^{x}\right)=a^{x} \ln a, \text { for } a>0, a \neq 1 \\
& \int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+C, \text { for } a>0, a \neq 1 \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(\ln x)=\frac{1}{x} \\
& \int \frac{1}{x} \mathrm{~d} x=\ln |x|+C \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(\sin x)=\cos x \\
& \int \cos x \mathrm{~d} x=\sin x+C \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x)= \\
& \int \sin x \mathrm{~d} x= \\
& \frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(\cot x)= \\
& \frac{\mathrm{d}}{\mathrm{~d} x}(\sec x)= \\
& \frac{\mathrm{d}}{\mathrm{~d} x}(\csc x)= \\
& \text { (}) \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin ^{-1} x\right)= \\
& \int \mathrm{d} x=\tan x+C \\
& \int \mathrm{~d} x= \\
& \int \mathrm{d} x=\sec x+C \\
& \int \mathrm{~d} x= \\
& \text { (} \dagger) \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos ^{-1} x\right)= \\
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(\tan ^{-1} x\right)= \\
& \int f(x) \mathrm{d} x=F(x)+C \\
& \int \mathrm{~d} x=\sin ^{-1} x+C \\
& \int \mathrm{~d} x= \\
& \int \frac{1}{x^{2}+1} \mathrm{~d} x= \\
& \int f(a x+b) \mathrm{d} x=\frac{F(a x+b)}{a}+C
\end{aligned}
$$

Exercise 29.

1. Evaluate the following indefinite integrals.
(a) $y=\int \frac{2}{3 x-1} \mathrm{~d} x$
(b) $y=\int \mathrm{e}^{2 x+3} \mathrm{~d} x$
(c) $y=\int \frac{2}{4 x^{2}+3} \mathrm{~d} x$
(d) $y=\int \sin 2 x \mathrm{~d} x$
(e) $y=\int \cos ^{2} x \mathrm{~d} x$
2. The gradient at any point (x, y) on a curve is $4 x^{3}-6 x+1$. The curve passes through the point $(-1,4)$. Find the equation of the curve.

5.2 Definite integrals (with formal treatment) [EXTRA]

The development of the note of the definite integral originated from the needs in many practical situations, such as evaluating the area of a given region, evaluating the arc length on a certain curve, and calculating the displacement of an object whose velocity changes over time, etc.

Given the curve with equation $y=x^{2}$, find the area under the curve, between the lines $x=0$ and $x=1$.
$(\ddagger) \quad$ Now let us generalize this idea by investigating a function $f(x)$ on a closed interval $[a, b]$, where $a<b$.
Define a partition P as a finite sequence of points in this interval such that,

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b
$$

denote the width of each sub-interval $\left[x_{k-1}, x_{k}\right]$ by $\Delta x_{k}=x_{k}-x_{k-1}$, and denote the maximum of these widths by

$$
\lambda=\max _{1 \leq k \leq n}\left(\Delta x_{k}\right)
$$

We then take, in each sub-interval, an arbitrary point ξ_{k}, and sum up the areas of all the small rectangles to obtain the total area:

$$
S\left(P ; \xi_{k}\right)=\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}
$$

This $S\left(P ; \xi_{k}\right)$ is called a Riemann sum of $f(x)$ with respect to the partition P, which is an approximation to the area under the curve over the interval $[a, b]$. It can be seen that such a Riemann sum depends on both the partition P and the points ξ_{i} chosen in the sub-intervals. However, it is obvious that the actual area is independent of such choices.

When the widths of the sub-intervals become sufficiently small, the Riemann sum is expected to approach the actual area. Hence we define the definite integral (or Riemann integral) of the function $f(x)$ over the interval $[a, b]$ as the limit of the Riemann sums as the maximum width λ approaches 0 :

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{\lambda \rightarrow 0} \sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}
$$

$(\ddagger) \quad$ The existence of this limit leads to the issue of integrability. This is something way too beyond this course.

Now we return to the area under the curve $y=x^{2}$ over the interval $[0,1]$.
To make it simpler, we can use partitions with n sub-intervals of equal length: $\Delta x_{k}=\frac{1}{n}$, and $x_{k}=\frac{k}{n}$.
Furthermore, within each sub-interval $\left[x_{k-1}, x_{k}\right]$, the point ξ_{k} is chosen to be the right endpoint, namely x_{k}. Then the Riemann sum becomes:

$$
\begin{array}{rlrl}
S_{n} & =\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k} \\
& =\sum_{k=1}^{n} x_{k}^{2} \cdot \frac{1}{n} \\
& =\sum_{k=1}^{n} \frac{1}{n}\left(\frac{k}{n}\right)^{2} \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6} \quad \\
& =\frac{2 n^{2}+3 n+1}{6 n^{2}} \\
\Rightarrow \quad \int_{0}^{1} x^{2} \mathrm{~d} x & =\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n+1}{6 n^{2}} \\
& =\frac{1}{3} . & \\
\quad\left(\lambda=\Delta x_{k}=\frac{1}{n} ; \lambda \rightarrow 0 \text { means } n \rightarrow \infty\right)
\end{array}
$$

Exercise 30.

$(\ddagger) \quad$ By applying the same technique, evaluate the integral

$$
\int_{-1}^{3}\left(\frac{1}{2} x+1\right) \mathrm{d} x
$$

You may want to verify your answer by finding the corresponding area geometrically.

5.3 Fundamental theorem of calculus [EXTRA]

Taking limits is always something difficult, so we now intuitively introduce the fundamental theorem of calculus.
Given that $f(x)$ is a continuous function over the interval $[a, b]$, and that $F(x)$ is an antiderivative of $f(x)$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

By employing this theorem, we can solve the previous problem in a much quicker way:

$$
\int_{0}^{1} x^{2} \mathrm{~d} x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}-0=\frac{1}{3}
$$

Given a function $f(x)$ and real numbers a, b and c, note that

$$
\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{c} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x
$$

and that

$$
\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x .
$$

Try to explain these two equations geometrically.

Exercise 31.

Apply the fundamental theorem of calculus to evaluate the following definite integrals.

1. $\int_{1}^{2}\left(x+\frac{1}{x}\right)^{3} \mathrm{~d} x$
2. $\int_{0}^{1} \mathrm{e}^{2 x-1} \mathrm{~d} x$
3. $\int_{0}^{\pi} \sin \frac{x}{2} \mathrm{~d} x$
4. $\int_{0}^{\frac{\pi}{4}} \cos ^{2} 3 x \mathrm{~d} x$
5. $\int_{0}^{\frac{1}{2}} \frac{1}{4 x^{2}+1} \mathrm{~d} x$
6. $\int_{-1}^{1} \frac{1}{x} \mathrm{~d} x$
(The last question relates to the next section.)

Exercise 32.

1. Find the area of the region enclosed by $y=\sin x$ and $y=\frac{2}{\pi} x$ in the first quadrant.
2. Find the area of the region enclosed by the curve $y=\frac{1}{x}$ and the line $2 x+3 y=7$ in the first quadrant.
3. (\dagger) Two functions

$$
F(a)=\int_{0}^{a} \frac{1}{x^{2}+1} \mathrm{~d} x \quad \text { and } \quad G(a)=\int_{0}^{a} \frac{1}{x+1} \mathrm{~d} x
$$

are defined for $a>0$. Find the maximum value of $F(a)-G(a)$.
4. The curve $y=f(x)$ has a stationary point at $(0,3)$ and it is given that $f^{\prime \prime}(x)=\mathrm{e}^{\frac{x}{2}}$.
(a) Find $f(x)$.
(b) Find the nature of this stationary point.
5. (\dagger) Show that (for $t>0$)
(a) $\int_{0}^{1} \frac{1}{(1+t x)^{2}} \mathrm{~d} x=\frac{1}{1+t}$,
(b) $\int_{0}^{1} \frac{-2 x}{(1+t x)^{3}} \mathrm{~d} x=-\frac{1}{(1+t)^{2}}$.

Noting that the right hand side of (b) is the derivative of the right hand side of (a), conjecture the value of

$$
\int_{0}^{1} \frac{6 x^{2}}{(1+x)^{4}} \mathrm{~d} x
$$

6. (\dagger) Evaluate the integral

$$
\int_{0}^{1}(x+1)^{k-1} \mathrm{~d} x
$$

in the cases $k \neq 0$ and $k=0$. Hence deduce that $\lim _{k \rightarrow 0} \frac{2^{k}-1}{k}=\ln 2$.
7. (\dagger) Prove the identities $\cos ^{4} \theta-\sin ^{4} \theta \equiv \cos 2 \theta$ and $\cos ^{4} \theta+\sin ^{4} \theta \equiv 1-\frac{1}{2} \sin ^{2} 2 \theta$. Hence evaluate

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta \mathrm{~d} \theta \quad \text { and } \quad \int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \mathrm{~d} \theta
$$

Evaluate also

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{6} \theta \mathrm{~d} \theta \quad \text { and } \quad \int_{0}^{\frac{\pi}{2}} \sin ^{6} \theta \mathrm{~d} \theta
$$

8. (\dagger) Find the maximum value of the function

$$
f(x)=\int_{0}^{x} \frac{1-t}{1+t} \mathrm{~d} t
$$

for $x>0$.
9. (\dagger) Find the derivative of the function

$$
f(x)=\int_{0}^{x^{2}} \ln (u+1) \mathrm{d} u
$$

5.4 Improper integrals

Type I: unbounded function values. For example: $\int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}}$.

Type II: unbounded integrating intervals. For example: $\int_{1}^{+\infty} \frac{\mathrm{d} x}{x^{2}}$.

Exercise 33.

1. Discuss whether the following improper integrals are finite, in different cases that arise according to the values of the positive constant p.

$$
\int_{0}^{1} \frac{1}{x^{p}} \mathrm{~d} x ; \quad \int_{1}^{+\infty} \frac{1}{x^{p}} \mathrm{~d} x
$$

2. Evaluate the improper integrals $\int_{1}^{+\infty} \mathrm{e}^{3-2 x} \mathrm{~d} x$.
3. Determine whether the area under the curve of $y=\tan ^{2} x$, between $x=0$ and $x=\frac{1}{2} \pi$, is finite or infinite.
4. $(\dagger) \quad$ It is given that $f(x)=\frac{1}{1+x^{2}}$, for $x \geq 0$.
(a) Sketch the graph of $f(x)$.
(b) Find the equation of the line passing through the point $(0,1)$ and is tangent to the graph of $f(x)$ at another point. Prove that there are no further intersections between the line and the curve.
(c) By comparing the areas under the graph of $f(x)$ and under this tangent line, prove that $\pi>3$.
(d) By comparing the improper integrals

$$
\int_{1}^{+\infty} f(x) \mathrm{d} x \quad \text { and } \quad \int_{1}^{+\infty} \frac{1}{x^{2}} \mathrm{~d} x
$$

prove that $\pi<4$.
(e) Given that $\tan \frac{1}{3} \pi=\sqrt{3}$ and that $\tan \frac{5}{12} \pi=2+\sqrt{3}$, obtain two more (better) upper bounds of π, by comparing similar pairs of improper integrals.
(f) By expanding $f(x)$ as a power series: $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-x^{10}+\cdots$, and then integrating over the interval $[0,1]$, show that

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots=\frac{\pi}{4}
$$

5.5 Volume of revolution

When the region under the graph of $y=f(x)$ between $x=a$ and $x=b$ (where $a<b$) is rotated about the x-axis, the volume of the solid of revolution formed is

$$
\int_{a}^{b} \pi y^{2} \mathrm{~d} x=\int_{a}^{b} \pi(f(x))^{2} \mathrm{~d} x
$$

When the region bounded by the (monotonic) curve with equation $y=f(x)$ between the lines $y=c$ and $y=d$ (where $c<d$) is rotated about the y-axis, the volume of the solid of revolution formed is

$$
\int_{c}^{d} \pi x^{2} \mathrm{~d} y
$$

Such an integral is usually evaluated by first expressing x in terms of y.
$(\dagger) \quad$ One special case is that a decreasing curve cuts the x-axis at $(a, 0)$ and the y-axis at $(0, b)$, where both a and b are positive. When rotating the region enclosed by the curve and the x - and y-axes in the first quadrant, about the y-axis, the volume of revolution can be found by both formulae:

$$
\int_{0}^{b} \pi x^{2} \mathrm{~d} y, \quad \text { and } \quad \int_{0}^{a} 2 \pi x y \mathrm{~d} x
$$

This can be proved later by the method of integration by parts.

Exercise 34.

1. Find the volume generated when the region under the graph of $f(x)$ between $x=a$ and $x=b$ is rotated completely about the x-axis, leaving your answers as multiples of π.
(a) $f(x)=x+\frac{1}{\sqrt{x}} ; a=\frac{1}{4}, b=1$
(b) $f(x)=\mathrm{e}^{2 x-1} ; a=0, b=1$
(c) $f(x)=\cos x ; a=-\frac{1}{2} \pi, b=\frac{1}{2} \pi$
(d) $f(x)=\tan x ; a=\frac{1}{4} \pi, b=\frac{1}{3} \pi$
2. Find the volume of revolution generated by rotating the region bounded by the curve with equation $y=\mathrm{e}^{-x}$ and the x - and y-axes, through 360° about the x-axis.
3. $(\dagger) \quad$ A torus is formed when the interior of a circle with equation $x^{2}+(y-r)^{2}=a^{2}$, where r and a are parameters such that $r>a>0$, is rotated completely about the x-axis. Find the volume of the torus, giving your answers in terms of π, a and r.
4. Find the volume generated when the region bounded by the graph of $f(x)$ between $y=c$ and $y=d$ is rotated completely about the y-axis, leaving your answers as multiples of π.
(a) $f(x)=\arctan x ; c=0, d=\frac{\pi}{3}$
(b) (\dagger) $\quad f(x)=\frac{1-x}{2+x} ; c=0, d=\frac{1}{2}$
(Try to use two different methods to solve this question.)

5.6 Integration by partial fractions

Exercise 35.

1. Find the following integrals:
(a) $\int \frac{x^{2}-4 x-6}{(x-2)(x+3)} \mathrm{d} x$
(b) $\int \frac{x^{2}-x}{(x+4)\left(x^{2}-4\right)} \mathrm{d} x$
(c) $\int \frac{1}{1-x^{4}} \mathrm{~d} x$
(d) $\int_{-\frac{1}{2}}^{1} \frac{1}{(x+1)(x+2)(x+3)} \mathrm{d} x$
(e) $(\dagger) \quad \int_{0}^{+\infty} \frac{x}{(x+1)(x+2)(x+3)} \mathrm{d} x$
2. The region enclosed between the graphs of $y=\frac{3}{x}$ and $x+2 y=7$ is denoted by R. Find the volume generated when R is rotated though four right angles about (a) the x-axis; (b) the y-axis.

5.7 Integration by substitution

The first example is rather easy: $\int x(2 x+1)^{3} \mathrm{~d} x$.
You may evaluate this integral by expanding the cube and integrating term by term. However, if instead we make the substitution: $u=2 x+1$, then $x=\frac{1}{2}(u-1)$. By differentiating x with respect to u, we have $\frac{\mathrm{d} x}{\mathrm{~d} u}=\frac{1}{2}$.
Now we write, in terms of differentials, $\mathrm{d} x=\frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u=\frac{1}{2} \mathrm{~d} u$, and the integral reads:

$$
\begin{aligned}
\int x(2 x+1)^{3} \mathrm{~d} x & =\int\left(\frac{u-1}{2} \cdot u^{3} \cdot \frac{1}{2}\right) \mathrm{d} u \\
& =\frac{1}{4} \int\left(u^{4}-u^{3}\right) \mathrm{d} u \\
& =\frac{1}{4}\left(\frac{u^{5}}{5}-\frac{u^{4}}{4}\right)+C
\end{aligned}
$$

$$
=\frac{(2 x+1)^{5}}{20}-\frac{(2 x+1)^{4}}{16}+C . \quad(\text { substitute back to } x)
$$

You may see the benefit of substitution more clearly when you work on this integral: $\int x(2 x+1)^{33} \mathrm{~d} x$.

Exercise 36.

For each of the following substitutions, write $\mathrm{d} x$ in terms of $\phi(t) \mathrm{d} t$ or $\mathrm{d} t$ in terms of $\psi(x) \mathrm{d} x$, whichever you think is simpler.

1. $t=1+x^{2}$
2. $t=\sqrt{2 x+1}$
3. $t=\sin x$
4. $x=\mathrm{e}^{t}$
5. $x=\ln (t+1)$
6. $t=\tan \frac{x}{2}$
7. $x^{2}=\tan t$
8. $\mathrm{e}^{t}=\cos x$
9. Find the integral: $\int 3 x \sqrt{2 x-1} \mathrm{~d} x$.

Let $u=\sqrt{2 x-1}$, then $x=\frac{u^{2}+1}{2}$, and $\frac{\mathrm{d} x}{\mathrm{~d} u}=u$, or $\mathrm{d} x=u \mathrm{~d} u$. Therefore,

$$
\begin{aligned}
\int 3 x \sqrt{2 x-1} \mathrm{~d} x & =\int\left(3 \cdot \frac{u^{2}+1}{2} \cdot u \cdot u\right) \mathrm{d} u \\
& =\frac{3}{2} \int\left(u^{4}+u^{2}\right) \mathrm{d} u \\
& =\frac{3}{2}\left(\frac{u^{5}}{5}+\frac{u^{3}}{3}\right)+C \\
& =\frac{3}{10}(2 x-1)^{\frac{5}{2}}+\frac{1}{2}(2 x-1)^{\frac{3}{2}}+C .
\end{aligned}
$$

You may also try to use the substitution $v=2 x-1$, or even without using any substitution at all, to evaluate this integral.
2. Find the integral: $\int \frac{1}{x+\sqrt{x}} \mathrm{~d} x$.

Let $u=\sqrt{x}$, then $x=u^{2}$, and $\mathrm{d} x=2 u \mathrm{~d} u$. Therefore,

$$
\begin{aligned}
\int \frac{1}{x+\sqrt{x}} \mathrm{~d} x & =\int\left(\frac{1}{u^{2}+u} \cdot 2 u\right) \mathrm{d} u \\
& =\int \frac{2}{u+1} \mathrm{~d} u \\
& =2 \ln |u+1|+C \\
& =2 \ln |\sqrt{x}+1|+C
\end{aligned}
$$

3. Find the definite integral: $\int_{0}^{1} x^{2} \sqrt{1-x^{3}} \mathrm{~d} x$.

Let $u=1-x^{3}$, then $\mathrm{d} u=-3 x^{2} \mathrm{~d} x$, or $x^{2} \mathrm{~d} x=-\frac{1}{3} \mathrm{~d} u$.

When $x=0, u=1$; when $x=1, u=0$. It is alright to have the upper limit less than the lower limit. Hence,

$$
\begin{aligned}
\int_{0}^{1} x^{2} \sqrt{1-x^{3}} \mathrm{~d} x & =\int_{1}^{0} \sqrt{u} \cdot\left(-\frac{1}{3}\right) \mathrm{d} u \\
& =\left.\left(-\frac{1}{3} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right)\right|_{1} ^{0} \\
& =\left.\left(-\frac{2}{9} u^{\frac{3}{2}}\right)\right|_{1} ^{0} \\
& =-\frac{2}{9} \cdot(0-1) \\
& =\frac{2}{9}
\end{aligned}
$$

For definite integrals, it is important to substitute also the upper and the lower limits. In this example we see that sometimes it is helpful to write $\mathrm{d} u$ in terms of $\phi(x) \mathrm{d} x$, where $\phi(x)$ is a factor of the original integrand.

Exercise 37.

Evaluate the following integrals:

1. $\int \mathrm{e}^{\sin x} \cos x \mathrm{~d} x$
2. $\int x \sqrt{3-2 x^{2}} \mathrm{~d} x$
3. $\int \frac{x^{2}}{x^{3}-1} \mathrm{~d} x$
4. $\int_{0}^{1} \frac{x}{x^{4}+1} \mathrm{~d} x$
5. $\int_{0}^{\frac{\pi}{4}} \sin 2 x \cos ^{4} x \mathrm{~d} x$
6. $\int 3 x^{3}\left(x^{2}-1\right)^{5} \mathrm{~d} x$
7. $\int \frac{\sqrt{x}+1}{\sqrt{x}-1} \mathrm{~d} x$
8. $\int_{0}^{1} x^{2} \sqrt[3]{1-x} \mathrm{~d} x$
9. $\int_{-1}^{0} x^{2} \sqrt{1-3 x} \mathrm{~d} x$
10. $\int_{0}^{\frac{\pi}{8}} \sec ^{4} 2 x \tan 2 x \mathrm{~d} x$
11. ($\dagger) \quad \int_{0}^{3} \frac{1}{(1+x) \sqrt{x}} \mathrm{~d} x$
12. ($\dagger) \quad \int_{0}^{1} \frac{1}{\sqrt{x(1-x)}} \mathrm{d} x$
13. (†) $\int \frac{1}{\sqrt{x}+\sqrt[3]{x}} \mathrm{~d} x$
14. (†) $\quad \int \sec x \mathrm{~d} x$
15. (†) $\int \frac{1}{x^{3}+1} \mathrm{~d} x$

5.8 Integration by parts

The formula of integration by parts (shortened as IBP) is derived from the product rule of differentiation:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} .
$$

Integrating both sides with respect to x yields:

$$
u v+C=\int\left(u^{\prime} v\right) \mathrm{d} x+\int\left(u v^{\prime}\right) \mathrm{d} x .
$$

By rearranging the terms, we can write:

$$
\begin{aligned}
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x & =u v-\int \frac{\mathrm{d} u}{\mathrm{~d} x} v \mathrm{~d} x \\
\text { or } \quad \int u \mathrm{~d} v & =u v-\int v \mathrm{~d} u .
\end{aligned}
$$

Note that there are indefinite integrals on both sides, thus it is unnecessary to include the constant ' $+C$ '.
Worked examples:

1. Find the integral: $\int x \sin 3 x \mathrm{~d} x$.

The first step is to recognize which part in the integrand is ' u ', and which part is ' $\mathrm{d} v$ ', or ' $\frac{\mathrm{d} v}{\mathrm{~d} x} \mathrm{~d} x$ '.
Usually when we have a product of a power function (such as x^{n}) and an exponential, sine, or cosine function (i.e. $\mathrm{e}^{a x}, \sin a x$, or $\cos a x$), we consider the power function as u, and the other part (exponential, sine, or cosine together with $\mathrm{d} x)$ as $\mathrm{d} v$.

On the other hand, when a power function x^{n} is multiplied with a logarithmic function (e.g. $\ln x$), we choose $u=\ln x$, and $\mathrm{d} v=x^{n} \mathrm{~d} x$.

Therefore in this example, we take $u=x$, and $\mathrm{d} v=\sin 3 x \mathrm{~d} x$, or $\frac{\mathrm{d} v}{\mathrm{~d} x}=\sin 3 x$. This means that

$$
u=1, \quad \text { and } \quad v=\int \sin 3 x \mathrm{~d} x=-\frac{1}{3} \cos 3 x(+C)
$$

In the following calculation, the above integration constant can be ignored. ($(\boldsymbol{\dagger})$ Think about why. $)$
Now we apply the IBP formula:

$$
\begin{aligned}
\int x \sin 3 x \mathrm{~d} x & =\int u \mathrm{~d} v \\
& =u v-\int v \mathrm{~d} u \\
& =x \cdot\left(-\frac{1}{3} \cos 3 x\right)-\int\left(-\frac{1}{3} \cos 3 x\right) \mathrm{d} x \\
& =-\frac{1}{3} x \cos 3 x+\frac{1}{3} \int \cos 3 x \mathrm{~d} x \\
& =-\frac{1}{3} x \cos 3 x+\frac{1}{3} \cdot \frac{1}{3} \sin 3 x+C \\
& =-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x+C
\end{aligned}
$$

2. Find the definite integral: $\int_{1}^{\mathrm{e}} \ln x \mathrm{~d} x$.

First we look at the indefinite integral: $\int \ln x \mathrm{~d} x$. Set $u=\ln x$, and $\mathrm{d} v=\mathrm{d} x$. This means $\mathrm{d} u=\frac{1}{x} \mathrm{~d} x$, and $v=x$.
Thus

$$
\int \ln x \mathrm{~d} x=x \ln x-\int\left(x \cdot \frac{1}{x}\right) \mathrm{d} x=x \ln x-\int 1 \mathrm{~d} x=x \ln x-x+C .
$$

Therefore

$$
\int_{1}^{\mathrm{e}} \ln x \mathrm{~d} x=\left.(x \ln x-x)\right|_{1} ^{\mathrm{e}}=(\mathrm{e}-\mathrm{e})-(0-1)=1 .
$$

3. Find the integral: $\int x^{2} \mathrm{e}^{-2 x} \mathrm{~d} x$.

Set $u=x^{2}$, and $\mathrm{d} v=\mathrm{e}^{-2 x} \mathrm{~d} x$, or $\frac{\mathrm{d} v}{\mathrm{~d} x}=\mathrm{e}^{-2 x}$. This means

$$
\mathrm{d} u=2 x \mathrm{~d} x, \quad \text { and } \quad v=\int \mathrm{e}^{-2 x} \mathrm{~d} x=-\frac{1}{2} \mathrm{e}^{-2 x}(+C)
$$

Now we apply the IBP formula:

$$
\begin{align*}
\int x^{2} \mathrm{e}^{-2 x} \mathrm{~d} x & =x^{2} \cdot\left(-\frac{1}{2} \mathrm{e}^{-2 x}\right)-\int\left(-\frac{1}{2} \mathrm{e}^{-2 x}\right) \cdot 2 x \mathrm{~d} x \\
& =-\frac{x^{2}}{2} \mathrm{e}^{-2 x}+\int x \mathrm{e}^{-2 x} \mathrm{~d} x \\
& =-\frac{x^{2}}{2} \mathrm{e}^{-2 x}+\int x \mathrm{~d}\left(-\frac{1}{2} \mathrm{e}^{-2 x}\right) \\
& =-\frac{x^{2}}{2} \mathrm{e}^{-2 x}+x \cdot\left(-\frac{1}{2} \mathrm{e}^{-2 x}\right)-\int\left(-\frac{1}{2} \mathrm{e}^{-2 x}\right) \mathrm{d} x \tag{*}\\
& =-\frac{x^{2}}{2} \mathrm{e}^{-2 x}-\frac{x}{2} \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}+C \\
& =-\frac{2 x^{2}+2 x+1}{4} \mathrm{e}^{-2 x}+C
\end{align*}
$$

Note that IBP is applied for a second time where the symbol $(*)$ is marked; this time the substitutions of u and v are not explicitly expressed.
4. Find the integral: $\int \mathrm{e}^{x} \sin x \mathrm{~d} x$.

For this integral we also need to apply IBP twice:

$$
\begin{aligned}
\int \mathrm{e}^{x} \sin x \mathrm{~d} x & =\int \sin x \mathrm{~d}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x} \sin x-\int \mathrm{e}^{x} \mathrm{~d}(\sin x)=\mathrm{e}^{x} \sin x-\int \mathrm{e}^{x} \cos x \mathrm{~d} x \\
& =\mathrm{e}^{x} \sin x-\int \cos x \mathrm{~d}\left(\mathrm{e}^{x}\right)=\mathrm{e}^{x} \sin x-\mathrm{e}^{x} \cos x+\int \mathrm{e}^{x} \mathrm{~d}(\cos x) \\
& =\mathrm{e}^{x} \sin x-\mathrm{e}^{x} \cos x-\int \mathrm{e}^{x} \sin x \mathrm{~d} x \\
\therefore \quad 2 \int \mathrm{e}^{x} \sin x \mathrm{~d} x & =\mathrm{e}^{x} \sin x-\mathrm{e}^{x} \cos x+C^{\prime} \\
\text { and } \quad \int \mathrm{e}^{x} \sin x \mathrm{~d} x & =\frac{\mathrm{e}^{x} \sin x-\mathrm{e}^{x} \cos x}{2}+C .
\end{aligned}
$$

One may start with

$$
\int \mathrm{e}^{x} \sin x \mathrm{~d} x=\int \mathrm{e}^{x} \mathrm{~d}(-\cos x)
$$

and obtain (obviously) the same answer, still through IBP twice. Try to work out full details by yourself:

Exercise 38.

Evaluate the following integrals:

1. $\int x \mathrm{e}^{3 x} \mathrm{~d} x$
2. $\int x^{4} \ln 3 x \mathrm{~d} x$
3. $\int \frac{\ln x}{x^{2}} \mathrm{~d} x$
4. $\int_{0}^{\frac{\pi}{2}} x \sin \frac{x}{2} \mathrm{~d} x$
5. $\int_{0}^{\pi} x \sin ^{2} x \mathrm{~d} x$
6. $\int x^{2} \sin 2 x d x$
7. $\int \mathrm{e}^{3 x} \cos 4 x \mathrm{~d} x$
8. $\int_{-\pi}^{\pi} \mathrm{e}^{-x} \sin 3 x \mathrm{~d} x$
9. $\int_{0}^{1} \tan ^{-1} x \mathrm{~d} x$
10. (†) $\quad \int(x \ln x)^{2} \mathrm{~d} x$
11. (†) $\int x^{3} \mathrm{e}^{x^{2}} \mathrm{~d} x$
12. (†) $\quad \int \sin 2 x \mathrm{e}^{\sin x} \mathrm{~d} x$
13. (†) $\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x}} \mathrm{~d} x$

Exercise 39.

Evaluate each of the following indefinite integrals by substitution.

1. $\int \frac{\mathrm{d} x}{x^{2} \sqrt{1+x^{2}}}$. Try different substitutions: (i) $x=\frac{1}{t}$; (ii) $x=\tan \theta$; or (iii) first write the integrand as $\frac{1}{x^{3} \sqrt{1+\frac{1}{x^{2}}}}$, then make the substitution $u=1+\frac{1}{x^{2}}$.
2. $\int \tan ^{10} x \sec ^{2} x \mathrm{~d} x$. Try $u=\tan x$.
3. $\int \frac{\sin \sqrt{x}}{\sqrt{x}} \mathrm{~d} x$
4. $\int \frac{\mathrm{d} x}{\mathrm{e}^{x}-\mathrm{e}^{-x}}$
5. $\int \frac{\sin x+\cos x}{\sqrt[3]{\sin x-\cos x}} \mathrm{~d} x$
6. $\int \frac{\mathrm{d} x}{(\arcsin x)^{2} \sqrt{1-x^{2}}}$
7. $\int \frac{x \tan \sqrt{1+x^{2}}}{\sqrt{1+x^{2}}} \mathrm{~d} x$
8. $\int \frac{\mathrm{d} x}{\sqrt{1+\mathrm{e}^{2 x}}}$. Try $u=\sqrt{1+\mathrm{e}^{2 x}}$.
9. $\int \frac{\mathrm{d} x}{x^{4} \sqrt{1+x^{2}}}$. Try first substitute $x=\tan \theta$, then $u=\sin \theta$. Alternatively, $\operatorname{try} u=\frac{x}{\sqrt{1+x^{2}}}$.
10. $\int \sqrt{\frac{x-1}{x+1}} \mathrm{~d} x$. First substitute $t=\sqrt{\frac{x-1}{x+1}}$, then use partial fraction decomposition.
11. $\int \frac{\mathrm{d} x}{\sqrt{\left(1-x^{2}\right)^{3}}}$
12. $\int \frac{\mathrm{d} x}{x+\sqrt{1-x^{2}}}$. First substitute $x=\sin \theta$, then write $\cos \theta$ in the numerator as $\left[\frac{1}{2}(\sin \theta+\cos \theta)+\frac{1}{2}(\cos \theta-\sin \theta)\right]$.
13. $\int \frac{\mathrm{d} x}{1+\sqrt{2 x}}$
14. $\int \frac{\mathrm{d} x}{x \sqrt{x^{2}-1}}$. Try $x=\sec \theta$.
15. $\int \frac{\arctan \sqrt{x}}{\sqrt{x}(1+x)} \mathrm{d} x$. Try $u=\arctan \sqrt{x}$.
16. $\int \frac{\mathrm{d} x}{x \sqrt[4]{1+x^{4}}}$. Try $u^{4}=1+x^{4}$.
17. $\int \frac{1+\ln x}{(x \ln x)^{2}} \mathrm{~d} x$

Evaluate each of the following indefinite integrals by parts.
18. $\int \mathrm{e}^{\sqrt{x+1}} \mathrm{~d} x$. First substitute $u=\sqrt{x+1}$.
19. $\int \frac{x}{\sin ^{2} x} \mathrm{~d} x$. Hint: $(\cot x)^{\prime}=-\csc ^{2} x=-\frac{1}{\sin ^{2} x}$.
20. $\int \arcsin x \mathrm{~d} x$. First substitute $u=\arcsin x$.
21. $\int x^{2} \arctan x \mathrm{~d} x$
22. $\int \ln ^{2} x \mathrm{~d} x$
23. $\int x \tan ^{2} x \mathrm{~d} x$. First write $\tan ^{2} x=\sec ^{2} x-1$.
24. $\int \frac{\ln ^{3} x}{x^{2}} \mathrm{~d} x$
25. $\int \cos (\ln x) \mathrm{d} x$. First substitute $x=\mathrm{e}^{u}$.
26. $\int(\arcsin x)^{2} \mathrm{~d} x$
27. $\int \sqrt{x} \mathrm{e}^{\sqrt{x}} \mathrm{~d} x$
28. $\int \ln \left(x+\sqrt{1+x^{2}}\right) \mathrm{d} x$
(\dagger) Evaluate each of the following indefinite integrals.
29. $\int \frac{x \mathrm{~d} x}{\sqrt{4 x-3}} \quad$ Try a few alternatives.
30. $\int \frac{\mathrm{d} x}{x(\sqrt[3]{x}-\sqrt{x})}$
31. $\int \frac{\sqrt{1+x}}{x \sqrt{1-x}} \mathrm{~d} x \quad$ Hint: use the substitution $\sqrt{\frac{1+x}{1-x}}=t$
32. $\int \frac{\mathrm{d} x}{\sqrt[3]{(x-1)^{2}(x+1)^{4}}} \quad$ Hint: write the integrand as $\frac{1}{(x+1)^{2}} \cdot\left(\sqrt[3]{\frac{x+1}{x-1}}\right)^{2}$, then substitute $t=\sqrt[3]{\frac{x+1}{x-1}}$.
33. $\int \frac{\mathrm{d} x}{4+4 \sin x+\cos x} \quad$ Hint: use the substitution $t=\tan \frac{x}{2}$.
34. $\int \ln \left(1+x^{2}\right) \mathrm{d} x$
35. $\int \frac{x+\sin x}{1+\cos x} \mathrm{~d} x \quad$ Hint: split into two integrals, then apply IBP for one of them.
36. $\int \frac{\sin ^{2} x}{\cos ^{3} x} \mathrm{~d} x$
37. $\int \frac{\mathrm{d} x}{\left(1+\mathrm{e}^{x}\right)^{2}}$
38. $(\boldsymbol{\dagger})$ Given the following integration formulae:

$$
\begin{array}{ll}
\int \frac{\mathrm{d} x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C ; & \int \frac{\mathrm{d} x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C ; \\
\int \frac{\mathrm{d} x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C ; & \int \frac{\mathrm{d} x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C ; \\
\int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C ; \\
\int \sqrt{x^{2} \pm a^{2}} \mathrm{~d} x=\frac{1}{2}\left[x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|\right]+C ;
\end{array}
$$

evaluate each of the following indefinite integrals. Hint: write $a x^{2}+b c+c$ in the form of $a\left[(x-p)^{2} \pm q^{2}\right]$.

$$
\begin{array}{cc}
\int(5 x+3) \sqrt{x^{2}+x+2} \mathrm{~d} x & \int(x-1) \sqrt{x^{2}+2 x-5} \mathrm{~d} x \\
\int \frac{(x-1) \mathrm{d} x}{\sqrt{x^{2}+x+1}} & \int \frac{(x+2) \mathrm{d} x}{\sqrt{5+x-x^{2}}}
\end{array}
$$

Exercise 40.

(\dagger) Enjoy the following challenges.

1. Evaluate the following integrals, in different cases that arise according to the value of the positive constant a :
(a) $\int_{0}^{1} \frac{1}{x^{2}+(a+2) x+2 a} \mathrm{~d} x$;
(b) $\int_{1}^{2} \frac{1}{u^{2}+a u+a-1} \mathrm{~d} x$.
2. Show, by means of a suitable change of variable, that

$$
\int_{0}^{\infty} f\left(\sqrt{x^{2}+1}+x\right) \mathrm{d} x=\frac{1}{2} \int_{1}^{\infty}\left(1+t^{-2}\right) f(t) \mathrm{d} t
$$

Hence show that

$$
\int_{0}^{\infty}\left(\sqrt{x^{2}+1}+x\right)^{-3} \mathrm{~d} x=\frac{3}{8}
$$

3. Let

$$
I=\int_{0}^{a} \frac{\cos x}{\sin x+\cos x} \mathrm{~d} x \quad \text { and } \quad I=\int_{0}^{a} \frac{\sin x}{\sin x+\cos x} \mathrm{~d} x
$$

where $0 \leq a<\frac{3}{4} \pi$. By considering $I+J$ and $I-J$, show that $2 I=a+\ln (\sin a+\cos a)$.
Find also:
(a) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{p \sin x+q \cos x} \mathrm{~d} x$, where p and q are positive numbers;
(b) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x+4}{3 \sin x+4 \cos x+25} \mathrm{~d} x$.
4. Differentiate $\sec t$ with respect to t.
(a) Use the substitution $x=\sec t$ to show that $\int_{\sqrt{2}}^{2} \frac{1}{x^{3} \sqrt{x^{2}-1}} \mathrm{~d} x=\frac{\sqrt{3}-2}{8}+\frac{\pi}{24}$.
(b) Determine $\int \frac{1}{(x+2) \sqrt{(x+1)(x+3)}} \mathrm{d} x$.
(c) Determine $\int \frac{1}{(x+2) \sqrt{x^{2}+4 x-5}} \mathrm{~d} x$.
5. (a) Use the substitution $u^{2}=2 x+1$ to show that, for $x>4$,

$$
\int \frac{3}{(x-4) \sqrt{2 x+1}} \mathrm{~d} x=\ln \left(\frac{\sqrt{2 x+1}-3}{\sqrt{2 x+1}+3}\right)+K
$$

where K is a constant.
(b) Show that $\int_{\ln 3}^{\ln 8} \frac{2}{\mathrm{e}^{x} \sqrt{\mathrm{e}^{x}+1}} \mathrm{~d} x=\frac{7}{12}+\ln \frac{2}{3}$.
6. The variables t and x are related by $t=x+\sqrt{x^{2}+2 b x+c}$, where b and c are constants and $b^{2}<c$. Show that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{t-x}{t+b}
$$

and hence integrate $\frac{1}{\sqrt{x^{2}+2 b x+c}}$.
Verify by direct integration that your result holds also in the case $b^{2}=c$ if $x+b>0$ but that your result does not hold in the case $b^{2}=c$ if $x+b<0$.
7. (a) Show that, for $m>0$,

$$
\int_{\frac{1}{m}}^{m} \frac{x^{2}}{x+1} \mathrm{~d} x=\frac{(m-1)^{3}(m+1)}{2 m^{2}}+\ln m
$$

(b) Show by means of a substitution that

$$
\int_{\frac{1}{m}}^{m} \frac{1}{x^{n}(x+1)} \mathrm{d} x=\int_{\frac{1}{m}}^{m} \frac{u^{n-1}}{u+1} \mathrm{~d} u
$$

(c) Evaluate:

$$
\int_{\frac{1}{2}}^{2} \frac{x^{5}+3}{x^{3}(x+1)} \mathrm{d} x ; \quad \text { and } \quad \int_{1}^{2} \frac{x^{5}+x^{3}+1}{x^{3}(x+1)} \mathrm{d} x
$$

8. Use the substitution $x=\frac{1}{t^{2}-1}$, where $t>1$, to show that, for $x>0$,

$$
\int \frac{1}{\sqrt{x(x+1)}} \mathrm{d} x=2 \ln (\sqrt{x}+\sqrt{x+1})+c
$$

[Note: You may use without proof the result $\int \frac{1}{t^{2}-a^{2}} \mathrm{~d} t=\frac{1}{2 a} \ln \left|\frac{t-a}{t+a}\right|+$ constant.]
The section of the curve $y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}$ between $x=\frac{1}{8}$ and $x=\frac{9}{16}$ is rotated through 360° about the x-axis. Show that the volume enclosed is $2 \pi \ln \frac{5}{4}$.
9. The number E is defined by $E=\int_{0}^{1} \frac{\mathrm{e}^{x}}{1+x} \mathrm{~d} x$.

Show that $\int_{0}^{1} \frac{x \mathrm{e}^{x}}{1+x} \mathrm{~d} x=\mathrm{e}-1-E$, and evaluate $\int_{0}^{1} \frac{x^{2} \mathrm{e}^{x}}{1+x} \mathrm{~d} x$ in terms of e and E.
Evaluate also, in terms of E and e as appropriate:

$$
\int_{0}^{1} \frac{\mathrm{e}^{\frac{1-x}{1+x}}}{1+x} \mathrm{~d} x ; \quad \text { and } \quad \int_{1}^{\sqrt{2}} \frac{\mathrm{e}^{x^{2}}}{x} \mathrm{~d} x
$$

10. The function $f(x)$ is defined by $f(x)=\frac{\mathrm{e}^{x}-1}{\mathrm{e}-1}$, for $x \geq 0$, and the function $g(x)$ is the inverse function to $f(x)$, so that $g(f(x))=x$. Sketch $f(x)$ and $g(x)$ on the same axes.
Verify, by evaluating each integral, that

$$
\int_{0}^{\frac{1}{2}} f(x) \mathrm{d} x+\int_{0}^{k} g(x) \mathrm{d} x=\frac{1}{2(\sqrt{\mathrm{e}}+1)}
$$

where $k=\frac{1}{\sqrt{\mathrm{e}}+1}$, and explain this result by means of a diagram.
11. Show that, for any integer m,

$$
\int_{0}^{2 \pi} \mathrm{e}^{x} \cos m x \mathrm{~d} x=\frac{1}{m^{2}+1}\left(\mathrm{e}^{2 \pi}-1\right)
$$

(a) Expand $\cos (A+B)+\cos (A-B)$. Hence show that

$$
\int_{0}^{2 \pi} \mathrm{e}^{x} \cos x \cos 6 x \mathrm{~d} x=\frac{19}{650}\left(\mathrm{e}^{2 \pi}-1\right)
$$

(b) Evaluate $\int_{0}^{2 \pi} \mathrm{e}^{x} \sin 2 x \sin 4 x \cos x \mathrm{~d} x$.
12. Show that

$$
\int_{0}^{\frac{\pi}{4}} \sin (2 x) \ln (\cos x) \mathrm{d} x=\frac{1}{4}(\ln 2-1)
$$

and that

$$
\int_{0}^{\frac{\pi}{4}} \cos (2 x) \ln (\cos x) \mathrm{d} x=\frac{1}{8}(\pi-\ln 4-2) .
$$

Hence evaluate

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\cos (2 x)+\sin (2 x)) \ln (\cos x+\sin x) \mathrm{d} x
$$

13. (a) Show that, for $n>0$,

$$
\int_{0}^{\frac{\pi}{4}} \tan ^{n} x \sec ^{2} x \mathrm{~d} x=\frac{1}{n+1} \quad \text { and } \quad \int_{0}^{\frac{\pi}{4}} \sec ^{n} x \tan x \mathrm{~d} x=\frac{(\sqrt{2})^{n}-1}{n} .
$$

(b) Evaluate the following integrals:

$$
\int_{0}^{\frac{\pi}{4}} x \sec ^{4} x \tan x \mathrm{~d} x \quad \text { and } \quad \int_{0}^{\frac{\pi}{4}} x^{2} \sec ^{2} x \tan x \mathrm{~d} x .
$$

